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ABSTRACT

Singularly perturbed models of the form i(t) = A(E)x(t), with A(c) analytic at 0, non-

singular for c E (0, co] and singular at c = 0, arise naturally in various problems of systems and

control theory. Under a so-called multiple semi-simple null structure or MSSNS condition on

A(c), the eigenstructure of this matrix has a multiple scale property that allows the asymptotic

eigenstructure of the matrix to be studied via reduced-order matrices associated with the sep-

arate scales. Under a stronger multiple semi-stability or MSST condition, this eigenstructure

decomposition translates into a time-scale decomposition of the solution x(t) of the system.

This paper is aimed at illuminating the MSSNS and MSST conditions. Using ideas from an al-

gebraic approach that we have developed for the study of singularly perturbed systems, we show

(among other results): that the Smith decomposition of A(c) permits transformation to a form

in which the scales become explicit and the computations become transparent and simple; that

this form allows us to identify perturbations of A(e) that all have the same scale-based decom-

positions; that the eigenstructure of A(E) does indeed display multiple scales under MSSNS,

and that the eigenvalues in this case can be approximated using reduced-order calculations;

that A(c) has MSSNS if and only if the orders of its invariant factors equal the orders of its

eigenvalues; that this happens if and only if the orders of its invariant factors and principal

minors are related in a specified way; and that A(E) has MSST if and only if it is Hurwitz for

c E (0, Eo] and has MSSNS and satisfies the requirement that the order in c of the real part of

every eigenvalue is not greater than the order of its imaginary part.

Submitted to LINEAR ALGEBRA AND ITS APPLICATIONS, Special Issue on Linear Algebra
in Electrical Engineering (January 1987)
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1. INTRODUCTION

Various problems in systems and control theory give rise to singularly perturbed, linear,

time invariant, n-th order models of the form

:(t) = A(c)z(t) (1)

with the matrix A(e) being n x n, analytic at 0, nonsingular 1 for e E (0, Co] and singular at

e = 0; see the recent books [1], [2] and survey [3]. Such models are found in, for example, studies

of root locus behavior under high gain feedback [4]-[6], in the analysis of power systems [7], and

in the context of Markov models [8], [9]. The small positive parameter c in these respective

contexts may, for example, represent the inverse of a high gain in a feedback controller, the

inverse of the large rotational inertia of some generator, or a small failure rate or inspection

rate in a reliability model.

A key objective in the study of singularly perturbed models is to express the behavior of

(1) as a perturbation of its behavior for e = 0. In particular, since A(E) becomes singular at

E = 0, attention focuses on behavior associated with those eigenvalues of A(e) that tend to 0 as

E tends to 0, i.e. on the "zero group" of eigenvalues of A(e), [10]. A prototype for results on

singularly perturbed systems is provided by the following example.

Example 1 Suppose

A(W)= (2A ll EAA1 2 (2)
eA2 1 cA 22

where the Aji are constant matrices. If All is nonsingular, then it is not hard to show that

the eigenvalues of A(e) fall into two separate groups: a fast group that is asymptotically domi-

nated by the eigenvalues of All, and a slow group - the zero group - that is asymptotically

dominated by the eigenvalues of cA 22 , where A 22 is the Schur complement of All in the matrix

A= (All A12) (3)

i.e.,

A2 2 = A 2 2 - A21 A- 1
1 A1 2 (4)

Note that our standing assumption on the nonsingularity of A(E) away from 0 guarantees that

A in (3) is nonsingular. With this assumption, it is easy to see that the assumed nonsingularity

of All implies the nonsingularity of A 2 2 .

The role of All in approximating the fast group of A(e) is easy to understand on the

basis of simple continuity arguments, since the nonzero eigenvalues of A(0) are those of All.

1 Our results can be extended quite easily, see [14], [15], to the case where A(e) has semi-simple
null structure, i.e. where the eigenvalue at 0 has geometric multiplicity equal to its algebraic multiplicity,
but we avoid this case for simplicity here.
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The appearance of A 22 requires a little more motivation. For this, apply to A(e) a similarity

transformation defined by the matrix

T(E)= (I A1Al2 ) (5)

thereby obtaining

C* A2(6)T(E)A(E)T'l())= (Al+c* , (6)
where the *'s denote constant matrices. Since the coupling between the nonsingular diagonal

blocks that is induced by the off-diagonal blocks appears smaller in (6) than in (1), one might

now be more inclined to believe the above claim regarding approximation of the fast and slow

groups of eigenvalues of A(e). A rigorous proof can be obtained by applying well established

arguments to the matrix in (6), for example a block version of Gerschgorin's theorem, [11], or

the arguments in [12], which we follow in Section 3.

Further intuition for this separation result will be obtained when we continue the example

later in this section. The conclusion for now is that knowing the eigenvalues of All and A 22

allows one to determine the dominant behavior of the eigenvalues of A(e), and hence to obtain

asymptotically good approximations of them via reduced-order calculations. It should already

be evident from the sketch above that the separation results are unchanged if the Ai. in (2)

have higher order terms appended to them. This fact will be elaborated on in Section 2.

The special form of A(e) in (2) made the computations above quite transparent, while the

condition that All be invertible made the computations possible. The invertibility condition

is equivalent to this special A(e) having what is termed multiple semi-simple null structure or

MSSNS, [8], [13]. The MSSNS condition for a general A(e) plays a fundamental role in studies

of its asymptotic eigenstructure, and a primary objective of the present paper is to illuminate

this condition by presenting certain equivalent forms of this condition and by examining certain

consequences of MSSNS. We begin in Section 2 with a review of results in [14], [15] that show

how the Smith decomposition of a general A(e) yields a similarity transformation that brings

this matrix to a special form - which we term the (reduced) ezplicit form - in which MSSNS

is easily checked and scale-based decomposition easily carried out. This explicit form is an

extension of the one in Example 1 above, and checking it for MSSNS reduces to checking

invertibility of a sequence of Schur complements. The explicit form also allows us to identify

perturbations of A(e) that have the same scale-based decompositions.

Building on the explicit form, Section 3 deduces certain consequences of MSSNS and

certain equivalent tests for it. In particular, it is shown that the eigenstructure of A(c) displays

multiple scales under MSSNS, and that the eigenvalues in this case can be approximated using
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reduced-order calculations. It is also demonstrated that A(E) has MSSNS if and only if the

orders of its invariant factors equal the orders of its eigenvalues.

Since eigenvalues are determined by principal minors while invariant factors are deter-

mined by all the minors, it is evident that MSSNS must imply some relation between these

two sets of minors. We show in Section 4 that in fact the MSSNS condition is satisfied if and

only if the orders of the invariant factors and principal minors of A(c) are related in a specified

way. The insights provided by these results can be applied, as outlined in that section, to the

problem of scaling a matrix A(E) via a diagonal similarity transformation to induce MSSNS in

it.

Many of the results on MSSNS in Sections 3 and 4 turn out to echo results in [5]. The

development in [5] is in the context of asymptotic root loci of systems under high-gain feedback,

and in principle a mapping can be made between the formulation there and ours here. Though

our route to results of interest for the system (1) is more direct, the treatment in [5] is of value

in rounding out our treatment, and the interested reader is encouraged to examine that paper

as well.

The illustration in Example 1 involved eigenstructure decomposition. One can, with

further assumptions, go beyond this to a time-scale decomposition of the solution x(t) of (1),

as shown next.

Example 1, Continued Consider the system (1) with A(c) defined as in (2), so that

ilA_ ( A11 A 12 (zlX(t)\ (7)
X2 (t) eA 2 1 EA22 x 2 (t) 

Much of the systems and control literature, see [1]-[3], focuses on this prototype example (or

one that can be obtained from it by simply changing the independent variable from t to r = Et).

Take All to be nonsingular, as before. If e = 0, then x 2 (t) evidently remains constant at its

initial value x2 (0), while xi (t) is governed by the fast group of eigenvalues of A(0), namely the

eigenvalues of All. Under the assumption that All is Hurwitz and not just nonsingular, i.e.

that all its eigenvalues lie in the open left half of the complex plane, x1 (t) settles down after

a fast transient to a steady state value that is readily calculated by setting il(t) = 0 in (7):

1 U (oo) = -Ame' A2 x2 (oo) = -AA t Ab1 2x 2 ( 0). 

Under the same assumption of Hurwitz All, the behavior for small nonzero e is only

slightly different from this: x2 (t) now varies slowly instead of being constant, so that the

behavior of xl(t), after a fast transient governed approximately by the eigenvalues of All, is

well approximated by -A-l Al 2 x 2 (t). Using this latter approximation for x (t) in the equation



for i 2 (t) yields the following approximate governing equation for x 2 (t):

x2 (t) P (A2 2 - A 2 1 Al A 1 2 ) 2 (t) = EA2 2 X2 (t) (8)

The appearance of the matrix eA 22 here is consistent with what was claimed earlier, namely

that the slow group of eigenvalues of A(e) is well approximated by the eigenvalues of CA22 . If

we assume that A 22 is also Hurwitz, (8) yields a uniformly good approximation to the solution

over an infinite interval. To summarize all this more precisely, what can be shown under the

above assumptions is that

(x1(t) = (xlf(t) + xi (et) +O(e)) t> (9a)

where

xlj(t) = Allxf (t), xj (0) = x1 (0) - x18 (0) (9b)

xi .(t) = -A-' A 1 2 2 . (t) (9c)

X2 , (t) = A22 X2 . (t), X2 , (O) = x2 (0) (9d)

and the subscripts f and a respectively denote "fast" and "slow" parts of the solutions. ..

The Hurwitz conditions above are equivalent to having the special A(e) in the example

satisfy a so-called multiple semi-stability or MSST condition, [8], [13]. The MSST condition for

a general A(e) plays a fundamental role in the time-scale decomposition of singularly perturbed

systems, see [8] and [13]-[15]. The latter reference, [15], contains particularly strong results on

the connection between MSST and time-scale decompositions. In the present paper, our focus

is not on the time-scale decomposition itself but on features of the MSST condition and on its

relation to other system properties. The MSST condition is introduced along with MSSNS in

Section 2, where the test for MSST for systems in explicit form is presented. We then show in

Section 3 that A(E) has MSST if and only if it is Hurwitz for E E (0,Eo] and has MSSNS and

satisfies the requirement that the order of the real part of every eigenvalue is not greater than

the order of its imaginary part. This result suggests the role of MSST in obtaining time-scale

decompositions.



2. DECOMPOSITION CONDITIONS FOR A(e) IN EXPLICIT FORM

2.1 Definitions of MSSNS and MSST

Before presenting our algebraic approach to scale-based decompositions and the condi-

tions that enable these decompositions, we shall review the definitions of MSSNS and MSST

presented in [8], [13]. First note that a matrix is said to have semi-simple null structure or

SSNS if the geometric multiplicity of the eigenvalue at 0 (when it is present) equals its alge-

braic multiplicity; it is said to be semi-stable if it has SSNS and all its nonzero eigenvalues have

negative real parts.

Since A(e) is analytic at 0, it has a Taylor expansion:

00

A(e) = E PFp (10)
p=o

Let Ml (e) be the total projection for the zero group of eigenvalues of A(e), i.e. the projection

onto the corresponding eigenspace, [10]. If Flo in (10) has SSNS, then it can be shown that

A2(e) = Ml (e)A(e)/e (11a)

also has a Taylor expansion, of the form

A2(e)= E ePF2 p (1lb)
p=o

If F20 also has SSNS, we can similarly define

00

A 3 (E) = M2 (E)A2 (C)/E = eP F3 p (12)
p=O

where M 2 (e) is the total projection for the zero group of eigenvalues of A 2 (e). This process can

be continued, terminating when Fmo does not have SSNS or when

p(Flo) +...p(Fmo) = n (13)

where p(F) denotes the rank of F and n is the order of the system (1), i.e. the dimension of

A() .

Now A(e) is, by definition, said to satisfy MSSNS if the above construction can proceed

all the way to the stage m at which (13) is satisfied, with F1o,..., F,o all having SSNS.

If in addition Flo,..., Fmo are all semi-stable, then A(e) is, by definition, said to satisfy

MSST.

The significance of these two conditions emerges from the results in [8], [13]-[15]. In

particular, [15] shows that (1) has what is termed a strong time-scale decomposition if and only

6~~~~~~~~~ I~I--- C~-----I I-



if it satisfies MSST. If the system satisfies only MSSNS but is stable for positive c, then it may

still be possible to obtain what [14] and [15] term an extended time-scale decomposition. In

any case, it is always possible under MSSNS to obtain an eigenstructure decomposition, as will

be shown in Section 3.

2.2 Transformation to Explicit Form Using the Smith Decomposition of A(e)

The starting point for our results is the Smith decomposition of A(e). Note that the entries

of A(e) are elements of the (local) ring of functions analytic at e = O, i.e. functions expressible

as Taylor series in c. This ring, which we shall denote by W, is a Euclidean domain [16], with

the degree of an element being the order of the first nonzero term in its Taylor expansion -

the degree of asei + ai+ lE+ + . .. , ai 6 0 is thus i. The units in this ring are precisely those

elements that have degree 0, i.e. those that are nonzero at e = 0. A square matrix U(e) over

this ring, i.e. one with entries from this ring, is termed unimodular if det U(e) is a unit, or

equivalently if det U(0) : 0, or equivalently if U-1(e) is also over this ring.

It now follows from well known results on Smith forms of matrices over Euclidean do-

mains, [16], that the n x n matrix A(c) has the decomposition

A(c) = P(c)D(e)Q(e) (14a)

where P(e) and Q(E) are unimodular matrices over W and

D(e) = block diagonal( Ik ,ElIk ,,.. ., Em - l Ik, ) (14b)

with Ikj denoting an identity matrix of dimension ky x ky, with ky = 0 corresponding to absence

of the j-th block, and with km t 0. The indices k,., and hence D(E), are unique, though P(E)

and Q(c) are not.

The above indices actually capture the invariant factor structure of A(e); in the pole-zero

language of [17], which is devoted to rational matrix structure but has much that applies to

local rings, the indices represent the zero structure of A(e) at e = 0. The i-th invariant factor,

by definition, is the ratio of the greatest common divisor (gcd) of all i x i minors of A(E) divided

by the gcd of all (i - 1) x (i - 1) minors, with the first invariant factor being defined as the gcd

of all the 1 x 1 entries. Since the gcd is only defined up to a unit, we can always represent it in

the ring W by an element of the form er for some nonnegative integer r, so the invariant factors

are also of this form. Now what the Smith decomposition in (14) captures is the fact that A(e)

has ky invariant factors of the form Ec-l, i.e. ki invariant factors of (degree or) order j - 1.

The decomposition (14) allows us to similarity transform the given model (1) to an

equivalent model in which the potential for scale-based decomposition is considerably more
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transparent, and where the analysis is as direct as in Example 1. For this, define

y(t) = P-'()zx(t) (15)

so that, combining (1) and (14), one gets the explicit form model

=(t)- D(e)A(e)y(t) (16a)

or

k(t) AIk() A12O(E) ... Alm (E) (t)

Ym2(t) 0 Elk, .A21i( A22 (6) A2m () Y2 (t)(t) 0 0 . m - x 1k m A,ml(¢) Am2 (E) Atom (c) ym'(t)
(16b)

where the matrix A(e) is unimodular and given by

A(e) = Q(E)P(e) (16c)

(We have dispensed with overbars for the entries of A(e) in (16b) so as to simplify the notation.)

Since the unimodular transformation matrix P(e) in (15) is finite and nonsingular at e = 0, the

asymptotic behavior of (1) may be retrieved without difficulty from that of the equivalent system

(16). It is also easy to see from Section 2.1 that such a unimodular similarity transformation

does not alter MSSNS/MSST. (For more on such "analytic similarity" of matrices, see [18].)

We can go still further. Examination of (16a,b) might suggest that the potential for

scale-based decomposition is, at least under appropriate conditions, completely displayed by

D(e), with the unimodular matrix A(e) not contributing anything. This thought would lead

one to examine a model in which A(e) is replaced by A(O):

z(t) = D(e)A(O)z(t) (17)

We shall term this the reduced ezplicit form of (1). A key result in [14] (see also [15]),

obtained by carrying out the computations of Section 2.1 in detail for A(c) given by (14),

is that the models in (1), (16) satisfy MSSNS (respectively MSST) if and only if the above

reduced explicit model satisfies MSSNS (respectively MSST). Furthermore, the eigenstructure

decomposition of (17) obtained under the MSSNS condition is an eigenstructure decomposition

of (16) and (1); this will be discussed in Section 3. Similarly, if MSST is satisfied, then a

time-scale decomposition of (17) is shown in [14], [15] to be a time-scale decomposition of (16)

as well, and to yield a time-scale decomposition of (1) on transformation by P(O).

These results therefore justify our discarding all e-dependent terms in A(c), if our interest

is only in testing for MSSNS/MSST and effecting the scale-based decompositions above. This

8



is a major simplification, since tests of the MSSNS/MSST conditions in (17), and computations

associated with scale-based decompositions of it, are as transparent and direct as those asso-

ciated with the model in Example 1 (which is already in reduced explicit form). The existing

literature on systems in the special form (7) can therefore be easily applied, with straightforward

extensions, to the much more general systems described by (1), once the Smith decomposition

(14) of A(e) has been determined.

Another important consequence of the results above is that inferences made regarding (1)

on the basis of computations with (17) also hold for any other system that has the same reduced

explicit form, (17). The set of matrices AA (e) that give rise to the same reduced explicit form

(17) as A(e) is precisely given by

AR,A(E) = R(E)P(c)D(E)[A(O)+ A(E)]P-1(E)R-'(E ) (18a)

where R(E) is any unimodular matrix and A(e) is any matrix over W such that A(O) = 0. This

can be rewritten as

AR,A (E) = R(E)A(c)[Q-'(E)[Q(O)P(O) + A(c)]P- (E)]R-L(E)

= R(e)A(e) U (E)R-1 (e) (18b)

where UA (e) is a unimodular matrix such that UA (0) = I. Each A(e) gives rise to a unique

unimodular matrix satisfying this condition, and conversely. The set of interest is thus precisely

characterized by (18b).

The key to the above development is the Smith decomposition of A(e). Computation of

the Smith form is nontrivial, of course, and involves operations comparable to those required

by [8], [13] to compute the Fip in (10)-(13) (though we have found, for examples that are small

enough to work out by hand, that computation of the Smith form is decidedly simpler than

the necessary operations on the matrix coefficients of Taylor series). However, our approach

here permits the analysis of (1) to be separated into a transformation step, which involves

determination of the Smith form and produces the reduced explicit form, and a greatly simpli-

fied decomposition step. In contrast, the operations of transformation and decomposition are

interleaved in the approach of [8] and [13].

Partly because of its two-step nature, and partly because of the algebraic connections,

our approach has also yielded several new insights and produced new results, for example

on feedback assignment of closed-loop time-scales, on perturbations that preserve time-scale

decompositions, on c-dependent amplitude scaling of state variables to induce MSSNS, and so

on, see [14], [15] and results in this paper.

9



2.3 Checking MSSNS and MSST in the Reduced Explicit Form

To simplify notation for the reduced explicit form, denote A(O) of (17) simply by A, and

its entries Aji (O) by Aji . The description of interest to us is then

i(t) = D(e)Az(t) (19a)

or

l (tk k ... 0 All A 12 ... Alm Zl(t)
(t) lk ... A 2 1 A 22 ... A2 m z 2 (t)L. JK a a A(19b)

Zm W(t) 0 0 ... cm - l I k m Am A.m2 AmmA Zm (t)

The objective of this subsection is to present the tests of MSSNS and MSST for the reduced

explicit form above. It is easy in principle, though notationally a little cumbersome, to apply

the operations specified in Section 2.1 to the system (19) and thereby deduce the tests. We

shall simply state the results obtained in [14]. One might anticipate these results in view of

the similarity of (19) to (7); the conditions for MSSNS (respectively MSST) are those that one

would naturally impose in order to get an eigenvalue decomposition (respectively time-scale

decomposition) of the type in Example 1.

To begin, suppose the k1 x kl matrix All is nonsingular. Let A 2 denote the matrix

obtained as the Schur complement of All in A(= A(O)), and let A 22 denote its leading k2 x k2

submatrix, so

A2 2 .. A2m A21

A 2 = . A .( A Alm ) (20a)

and

A2 2 = A2 2 - A2 1 A 1' A1 2 (20b)

Similarly, if A 22 is nonsingular, let A3 denote the Schur complement of A2 2 in A 2 , and let A33

denote its leading k 3 x k3 submatrix. The pattern in this construction is now evident. If at

some stage j we have kj = 0, then the corresponding stage is skipped; we then relabel Ai as

Ay+l, denote its leading ky+l x ky+l submatrix by Ai+l ,+l, and proceed. Note that A 1 is to

be taken as A and All as All. The result now is the following:

The matrix D(E)A in (19), and therefore A(e) as well, satisfies MSSNS (respectively

MSST) if and only if every Ajj for which k i : 0, j = 1,...,m, is nonsingular (respec-

tively Hurwitz).

(Note that, for this paper, a Hurwitz matrix is one whose eigenvalues are in the open left half

plane.) Since A is nonsingular - a consequence of our assumption that A(e) is nonsingular

10



away from 0 - the nonsingularity of Amm,, is guaranteed if those preceding Ajj for which ki y 0
are all nonsingular. The index m here can be seen to be the same one that appears in Section

2.1.

It was mentioned in Section 2.2 that P(E) and Q(c) in the Smith decomposition (14) are

not unique. A consequence of this is that the matrix A = Q(O)P(O) is not uniquely determined
by the decomposition. However, the results here do not depend on which decomposition is

chosen. In particular, [14] shows that the above Schur complements obtained from different

decompositions are related by similarity transformations.

11 -~-~--- ~~---------~



3. MSSNS/MSST, EIGENVALUES AND INVARIANT FACTORS

3.1 MSSNS and the Orders of Eigenvalues and Invariant Factors

This subsection will firstly establish the following characterization of MSSNS:

Result 1: A(e) has MSSNS if and only if the orders of its eigenvalues equal the orders

of its invariant factors, i.e. if and only if it has precisely kj eigenvalues of order j - 1 for

j= 1,...,m.

An analogous result is presented as the central theorem of [5], but mapping the (high-gain

feedback root locus) formulation and proof there to our setting here would lead to a considerably

more cumbersome proof than the direct one below.

In the process of proving Result 1, we shall also be demonstrating the earlier claim that

under MSSNS the eigenvalues of A(e) fall into separate groups, with kj eigenvalues of order j-1

in the j-th group, j = 1,..., m, and that the eigenvalues in these groups can be approximated

via the eigenvalues of reduced-order matrices. The precise result will be stated after proving

Result 1.

Proof: Since the unimodular similarity transformation P(e) described in Section 2.2 pre-

serves MSSNS/MSST, as well as eigenvalues and invariant factors, it suffices to consider a

matrix A(e) that is already in explicit form:

A(E) = D(c)A(E) (21a)

Ikl 0 ... All() A12 (E) ... Alm() 

C lj l A 21(E) A 22 (e) ... A2 m(e) (21b)

0 0 ... -Ik Aj) Am2() ... A,.,, ().()
with A(e) unimodular.

To show the "only if" part first, assume that A(e) has MSSNS. Following arguments in

[12], let

dj(e, A) = det[e- (j - ) A(e) - AI] (22)

and

fj (e, A) = det F(e, A) (23a)

where

e- Ik 0 

0 j
- 2

Ik,

F(e, A) = ..j [ - (i - )A() - AI] (23b)
Ik._ 0

0 Ikd+kj+i+...+km

12



so that
i-1

fj(c,A) = E d,(-,A), v = (j - i)ki (24)
i=1

For c $ 0, dj(E,A) and fj(c,A), regarded as polynomials in A, will have the same roots. Also,

fj (E, A) is a continuous function of c at e = 0, with

All A 1 2 ... Alj ... Al,

f(0, A) = det (25)
Ail A 2 ... A - AI A... im

0 0 ... 0 AIkj+1 + ...+km

The Aji here are the same as in (19), i.e. submatrices of the reduced explicit form. The latter

determinant is easily evaluated by iteratively using the fact that

A2 1 A22det(All2 A22 )= det All det A22 (26)

if All is nonsingular. The result of the evaluation, invoking the characterization of MSSNS in

Section 2.3 to ensure that the Schur complements A-i below (which are the same as those in

Section 2.3) are nonsingular for i = 1,... ,j - 1, is

j-1 m

fi(, A) = (II det A;i)(det[Ajj - AI])Aw, w = Z ki (27)
i=1 j+1

Thus fj(0, A) has kj roots that are identical to the kj eigenvalues of Ajj, which we shall denote

by Ai (Ajj), i= 1,..., .

It follows that fj(e, A) and hence dj(e, A) have ki roots that, after appropriate matching,

can be made arbitrarily close to these respective eigenvalues by choosing e small enough. Now

(22) shows that the roots of dj(e,A) are the eigenvalues of E-('-1)A(C). Hence there are kj

eigenvalues of A(e), which we shall denote by

j-1

Aj+i, sj = Ekq, i=l,...,k i (28)
q= 1

such that A,j+i/c -l can be brought arbitrarily close to Ai(Aij) by choosing e small enough (we

are assuming for notational simplicity that the indexing follows the matching). The conclusion,

since all the eigenvalues of Ajj are nonzero by the assumption of MSSNS, is that A(e) has

precisely kj eigenvalues of order j - 1.

For the "if" part, suppose that Aij is singular, but Aii for i = 1,... , j- 1 are nonsingular.

Then fj (0, A) in (27) has at least w + 1 roots at 0, so c-(-1) A(c) has at least w + 1 eigenvalues

that can be made arbitrarily close to 0 by choosing e small enough. It follows that A(e) has at
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least w + 1 eigenvalues of order higher than j - 1. However, it has only w invariant factors of

order higher than j - 1. 

This result is of intrinsic interest as a characterization of MSSNS. It also leads naturally to

the results of Section 4 and provides approaches to the problem of inducing MSSNS by amplitude

scaling of state variables via (nonunimodular) e-dependent diagonal similarity transformations.

The proof of Result 1 also establishes:

Result 2: Under MSSNS, the eigenvalues of A(e) converge asymptotically to the eigen-

values of cE-l Ajj, j = 1,...,m.

3.2 Relating MSST to MSSNS and the Eigenvalues of A(E)

It is of interest to see precisely what sorts of stability conditions on the original system

(1) will make MSST a consequence of MSSNS. The new result to be proved in this subsection

is the following:

Result 3: A(e) has MSST if and only if (i) it has MSSNS, and (ii) it is Hurwitz for

e (0, e0], and (iii) the order of the real part of every eigenvalue is not greater than the

order of its imaginary part.

The third condition requires that the order of the damping be at least as significant as the

order of the oscillation frequency.

Some elementary examples may help to illustrate the result before we present the proof.

The first condition rules out the matrix

(-C -E) (29)

from having MSST, even though it satisfies the other two conditions, but

( ° -E) (30)

satisfies all three conditions and has MSST. The third condition rules out

(z; -E ) (31)

Proof: To prove the "only if" part, note from Section 2.3 that MSST implies that all the

Ajj, j = 1,... ,m, are Hurwitz. They are hence a fortiori nonsingular, so A(e) has MSSNS

and (i) is established. It then follows from Result 2 that the eigenvalues of A(e) converge

asymptotically to those of Ei- Ajj, so (ii) and (iii) follow.
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For the "if" part, it follows from (i) and Result 2 that the eigenvalues A,j+i,i = 1,... ,kj,

j = 1,... ,m of A(E) converge asymptotically to those of d-l A3j. From the nonsingularity of

the Schur complements Ajj, we see that

lim(JA,.i/E'1) = Aj(Aj) t 0 (32a)

It follows from (iii) that

limRe (A,,+/c i - l ) = Re (Ai(Aji)) 0O (32b)
C-O

Now (ii) implies that the limit above is negative, and it follows that the Schur complements are

Hurwitz. The results of Section 2.3 then show that A(e) has MSST. .o

The assumption of MSST has dominated studies of time-scale decompositions. However,

systems such as (31) that satisfy conditions (i) and (ii) of Result 3, but not condition (iii), have

been considered in [14], [15], where it is shown that so-called extended time-scale decompositions

can be obtained under appropriate conditions. The basic idea here is to retain some critical

c-dependent terms in the scale-based decomposition, rather than simplifying all the way to the

constant matrices Aij.
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4. MSSNS, PRINCIPAL MINORS AND AMPLITUDE SCALING

4.1 MSSNS and Principal Minors

Denote the eigenvalues of A(e) by Ai, i = 1,..., n, and its j x j principal minors by M( ) ,

i =1,...,() j = . n. It is then well known that

det[AI -A()] = An - An- ( Ai) + A -2 ( AiAk) - ... + (-1) (A1 ... A) (33a)
isk

= n - Xn-'( M()) + A-2(M1 ( 2 )) -.. + (-l)nM(n) (33b)

Evidently the characteristic polynomial and hence the eigenvalues of A(E) are determined by

its principal minors. In addition, the orders of the coefficients E M(j) of the characteristic

polynomial suffice to determine the (fractional or integer) orders of the eigenvalues, via the

classical "Newton polygon" construction reviewed below, see also [5], [19].

The invariant factors of A(e) are determined by the gcd's of all its minors of each di-

mension. However, Result 1 and (33) lead one to conclude that, under MSSNS, the orders of

the E M/(j) suffice to compute the invariant factors. We show in this subsection that under

MSSNS the gcd's of the principal minors of each dimension suffice to determine the invariant

factors. In the process, we clarify the role that MSSNS plays in this determination, obtain an

alternate characterization of MSSNS, and develop insights that will be useful in the amplitude

scaling problem considered in the next subsection. Again, there are connections with results in

[5], and the reader may wish to explore these (see especially Appendix C in [5]).

In order to state our results, some additional notation is needed:

ai will denote the order of the i-th invariant factor, so ai = j - 1 if j is the smallest integer

for which i < kl +... + ki, with the ki. defined as in Section 2.2;

bi will denote the (possibly fractional) order of the i-th eigenvalue, with the eigenvalues

assumed to be numbered such that bl < ... < bn;

pj will denote the order of the gcd of all j x j principal minors M(i) of A(e); and

rj will denote the order of the sum E M(j) of these principal minors.

As mentioned above, the standard Newton polygon construction, [5], [19], can be applied

to the relationships embodied in (33a,b) to compute the bi from the r.. The basis for this lies

in the following lemma.

Lemma 1: Given a set of real numbers x., j = 1,...,n, there is a unique set of real

numbers Y;, i = 1,... ,n such that the following hold:

Y1 -.<-..-< Y (L1)
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Eyi< x, allj (L2)

Yi =xj wheny yj+ or j = n (L3)
i=1

The numbers yj may be obtained as the slopes of the segments of the "lower hull" in the

(Newton diagram) plot of x i versus j (with the origin included, i.e. x0 = 0), see Fig. 1.

The values of j that appear in (L3), i.e. values where yj 6 Yi+j or j = n, will be termed corner

points.

Though this lemma is not explicitly articulated in the usual approaches to the Newton

polygon, it is easily seen to underlie them. Both for this reason and because a proof follows

easily from the construction described in the lemma and Fig.1, we omit the proof here; see [14]

for details. The lemma is of potential value in other settings as well, which is why we have

isolated it.

What makes Lemma 1 applicable to computing the bi from the ri is the fact that these

two sets of numbers satisfy the above inequalities, with the substitutions xzj r i and yi - bi.

To see this, note first that (L1) is trivially satisfied, by definition. Also, (33) shows that the

sum of the j x j principal minors equals the sum of all j-fold products of the eigenvalues, so

that (L2) is satisfied. Equality fails to hold in (L2) precisely when there are cancellations of the

lowest order terms when summing the j-fold products of eigenvalues. For example, if n = 2,

A1 = -1 and A2 = 1 + c, then bl = 0 (and b2 = 0) but rl = 1. However, if bi V bj+l then there

will be only one j-fold product of eigenvalues that has order b1 + ... + bi , namely the product

A1 ... Ai , and all other j-fold products will have higher order, so equality holds in (L2). Also, if

j = n then there is only one term in the sum, namely A1 ... A, so equality holds again. Thus

(L3) is established. The conclusion is that the bi are given by the slopes of the segments of the

lower hull in the Newton diagram for the points ri.

Some further connections between the numbers defined above should be noted. In general

it will be the case that

Pi < rj (34)

Equality fails to hold precisely when the leading (lowest-order) terms cancel out upon summing

the j x j principal minors. When equality holds in (34), we shall say that the no-cancellation

condition holds. It is also evident from the definition of the ai that

al < ... < a. (35)

Furthermore, the definition of invariant factors in Section 2.2 shows that al + ... + ai is the
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order of the gcd of all j x j minors of A(c), so in particular

ai <_ py (36)
i=1

What (35) and (36) demonstrate is that, with the substitutions xy - py and ys - ay, the

integers p3 and ai satisfy (L1) and (L2). If (L3) was also satisfied, then Lemma 1 would imply

that the ai can be uniquely determined from the pi, as the slopes of the segments of the lower

hull in the Newton diagram for the points py.

The next result shows that MSSNS guarantees (L3) with the above substitutions, so under

MSSNS the invariant factors can indeed be determined from the gcd's of the principal minors of

each dimension, using the Newton polygon construction associated with Lemma 1. The result

below also shows that under MSSNS (34) holds with equality (i.e. the no-cancellation condition

holds) at the corner points. Conversely, if (L3) holds with the preceding substitutions, and if

the no-cancellation condition holds at the corner points, then A(e) satisfies MSSNS. When A(E)

is in explicit form, then the no-cancellation condition need not be checked: A(e) in explicit form

has MSSNS if and only if (L3) holds with the preceding substitutions.

Result 4: A(e) has MSSNS if and only if

a, = p, = r, when a= 4 aj+1 (37)
i=l

Furthermore, when A(e) is in explicit form, only the first equality in (37) needs to be

checked, because it implies the second.

Proof: To prove the "only if" part first, assume A(e) satisfies MSSNS. Then from Result

1 we have that bi = ai, i = 1,..., n. Now suppose aj aj+ 1. Then byj by+1, so by our earlier

arguments bl + ... + bi = ry. Hence al +... + a. = rj. Combining this with the inequalities in

(34) and (36) demonstrates the result.

For the "if" part, note from (34) that the lower hull for the points ry in the Newton

polygon construction cannot lie below that for the pj. Furthermore, since (37) shows that the

corner points for the ri hull coincide with those for the pi hull, the two hulls must be the

same. Hence the numbers bi obtained by applying Lemma 1 to the rj must be the same as the

numbers ai obtained by applying Lemma 1 to the py. In other words, bi = ai, so by Result 1

the matrix A(e) has MSSNS.

Suppose now that A(e) is in the explicit form (16) and that the first equality in (37) holds,

so ay - aj+1 and al + ... + aj = pi. Now examination of the explicit form shows that there is

only one principal minor of order pi, namely the leading principal minor of appropriate size (its
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size is actually kl +... + kq where q is the smallest integer for which k2 +2k3 +...+ qkq+l > pj).

Hence ry = pi, i.e. the second equality in (37) holds and the no-cancellation condition is satisfied

at the corner points. ..

The need to check the second equality in (37) when A(e) is not in explicit form can be

illustrated by the case of the matrix

I1 + CX:2 (38)

which has pi = 0, P2 = 2 and al = 0, a2 = 2 so (L1)-(L3) are satisfied with the substitutions

above, but rl = 2, r2 = 2 and bl = 1, b2 = 1, so indeed the matrix does not have MSSNS. For

an example to illustrate how we might use all the above results, consider the following.

Example 2 Let
e 1 1 1

£2 C3 0 1(A(e) = 2 d (39)
\6 C11 C11 C

It is easily seen that this is not in explicit form. To determine the a1 , we use the definition of

invariant factors in Section 2.2, which involves examining all minors of each dimension. A quick

inspection shows that there are 1 x 1 and 2 x 2 minors that are of order 0, so al = 0, a 2 = 0.

There is a 3 x 3 minor (which happens to be the leading principal minor) of order 3, and none

of order 2, hence a 3 = 3. Finally, the determinant is of order 10, so a 4 = 7. Examining the

principal minors, we see that pi = 1, P2 = 0, ps = 3, p4 = 10. Hence the ai and pj satisfy

(L1)-(L3), with the former being the slopes of the lower hull of the latter set of points in the

Newton diagram. Now if the no-cancellation conditions hold at the corner points, i.e. if r2 = P2

and r3 = p3, then we will be able to conclude from Result 4 that A(e) does indeed satisfy

MSSNS. Since there is only one 2 x 2 principal minor of order 0 and only one 3 x 3 principal

minor of order 3, these conditions are indeed satisfied. With the assurance that A(e) satisfies

MSSNS, one can now proceed with the additional work required to transform it to explicit form

and carry out scale-based decompositions of it.

4.2 Amplitude Scaling to Induce MSSNS

While unimodular similarity transformations do not affect MSSNS (or MSST), nonuni-

modular similarity tranformations may do so, by modifying the invariant factors of the matrix

(the eigenvalues are of course preserved). In particular, such transformations may be used to

induce MSSNS in a matrix that does not satisfy it, after which scale-based decompositions may

be carried out as earlier. Our aim in this section is only to illustrate what is possible.
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We restrict ourselves to nonunimodular transformations that are diagonal, which corre-

spond to c-dependent amplitude scaling of the individual state variables. Such transformations,

in addition to preserving eigenvalues, also preserve all principal minors of the matrix they act

on. The results of the previous subsection then show that a necessary condition for such a

transformation to induce MSSNS is that the no-cancellation condition pj = ri be satisfied at

the corner points of the Newton diagram for either of these sets of indices.

Our amplitude scaling results are drawn from the thesis [14], which includes results on a

systematic amplitude scaling procedure for matrices A(c) that satisfy certain conditions. Since

these conditions are not only rather strong but also hard to test for, we do not attempt to do

more than illustrate a simple case of the procedure here. We begin with a canonical example

that serves to illustrate the basic idea behind the procedure.

Example 3 Let
0 c 0 ... 0

i 0 0 2 ... 0

aA(9 ) (40)
0 0 0 ... 0,,-

C4- 0 0 ... 0

The nonnegative integers ai can be seen to be the orders of the invariant factors of A(c), though

not necessarily in ascending order now. The j x j principal minors for j < n and hence the

corresponding pj, ri are all 0, while al +... + a, = p, = rn. By applying the Newton polygon

construction to the ry or by directly evaluating the characteristic polynomial of A(c), it is easily

seen that the eigenvalues all have the same order, namely b = rn/n. Thus A(c) will have MSSNS

if and only if all the as are equal (and equal to b).

Now defining the similarity transformation

S(e) = diagonal [Ec I,... _WI - , 1] (41a)

with

wi=wi+l+b-a, i=1,... ,n-1, wn=0 (41b)

it is easily verified that

eb 0 ... (42)
0 0 cb.. 0

S(c)A(c)S - 1 (e) = . '-. . (42)
0 ... tb
b 0O ... O

so that this transformed matrix has MSSNS.

The following procedure is suggested by examples such as the above, and can be guar-

anteed to work under certain strong conditions, [14]. The first step is to transform A(c) to its
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explicit form. We assume from now on that this has been done, and use A(e) to denote the

matrix in explicit form. In the second step, we identify what may be termed a skeleton in A(e).

A skeleton consists of n elements, precisely one from each row and column of the matrix, with

the order of the element in the i-th row being ai. There has to be at least one skeleton in A(e)

because of our standing assumption of nonsingularity away from 0.

In the third step, we similarity transform A(c) with a permutation matrix that brings

the elements of the skeleton to the locations of the 1's in the block diagonal canonical circulant

matrix, whose diagonal blocks take the form

0 1 0 ... 0
0 1... 0

. '.. (43)
0 00 ... 1
1 0 0 ... 0

Though [14] considers the case of multiple blocks, we restrict ourselves here to the case of a

single block, i.e. to the case where the elements of the skeleton, after transformation, lie at

the locations of the n x n circulant matrix (43). Let a; now denote the order of the skeleton

element in the i-th row of the transformed matrix.

The final step of the procedure is to transform the matrix with the similarity transfor-

mation

S(e) = diagonal [Ew ,...,cW n-l, 1] (44a)

with

wi=wi+l+bi-ai, i=l,...,n-1, w,=O (44b)

where the bi are the orders of the eigenvalues. Under conditions described in [14], the resulting

matrix satisfies MSSNS.

We illustrate this procedure with an example.

Example 4 Consider the explicit form matrix below, with the skeleton elements enclosed

in brackets:
E3 C4 E5 [1]

A( [E] 
3 e (45)

C3 [f] E2 E7

e6 0e [eI] 7]

Since the matrix is in explicit form, it is easy to check for MSSNS. The matrix All referred to

in Section 2.3 is simply the (1,1) entry of the A(c) here evaluated at c = 0, and is 0, so MSSNS

does not hold. This fact can also be seen after determining that al = 0, a2 = 1, a3 = 1, a4 = 6

and b1 = b = bs = = 2.
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The similarity transformation that brings the skeleton elements to the canonical positions

mentioned above simply involves interchanging the first and third rows and then the first and

third columns. The result is the matrix

Al () C= [ s [ e (46)

[E1] 8 6 67

Now using (44) we find that wl = 4, w2 = 3, w3 = 2, W4 = 0. Transforming Al (c) with the

resulting S(c) gives (2 c2 £d e11
£2 C3 C2 C4

A2()=S(~)A()S- ()= t £2 £2 (47)

£2 e £4 C7

which is easily seen to have MSSNS (it is in explicit form, with invariant factor orders all equal

to 2). ..

The amplitude scaling procedure illustrated above is further developed in [14]. It has

been used to motivate the amplitude scaling carried out in [20], and to treat some further

generalizations.
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5. CONCLUSION

The algebraic approach to the analysis of singularly perturbed systems of the form (1),

as described here and in [14], [15], has added a useful dimension to what continues to be an

active area of study. It has provided novel ways to understand and interpret previous results,

and has yielded new results and new tools for analyzing singularly perturbed systems. In

particular, the MSSNS and MSST conditions that have been crucial to earlier work in singular

perturbations have been examined and illuminated from the algebraic viewpoint in this paper.

The connections with (frequency-domain) techniques and results developed in the study of

asymptotic root loci are also much more evident in our setting.

Fresh questions have arisen naturally in the context of this algebraic approach. For

example, it is of interest to further understand conditions and procedures for the extended

time-scale decompositions mentioned briefly at the end of Section 3. Also, Section 4 has only

touched on the task of inducing MSSNS by nonunimodular similarity tranformations, and has

not discussed in any detail the problem of relating properties of the transformed system back

to the original system. Another worthwhile task is to understand connections with the Jordan

structure of A(e), perhaps making deeper contact with the results of [10], [21] in the process.
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Fig. 1. Newton polygon construction.
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